ECE 172A: Introduction to Image Processing Analog Images: Part II

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Images as Functions
- - Vector-space formulation
 - Two-Dimensional Systems
- 2D Fourier Transform
 - Properties
 - Dirac Impulse, etc.
- Characterization of LSI Systems
 - Multidimensional Convolution
 - Modeling of Optical Systems
 - Examples of Impulse Responses

2D Fourier Transform

- Definition
- Separability
- Properties
- Dirac impulse
- Dirac related Fourier transforms
- Application: finding the orientation
- Importance of the phase

Dirac-Related Fourier Transforms

Constant

One-dimensional:
$$1 \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{j}\omega x} \, \mathrm{d}x = ???$$

$$= \lim_{A \to \infty} \int_{-A}^{A} \mathrm{e}^{-\mathrm{j}\omega x} \, \mathrm{d}x = 2\pi \, \delta(\omega) \qquad \text{(or by duality)}$$

Two-dimensional: $1 \stackrel{\mathcal{F}}{\longleftrightarrow} (2\pi)^2 \delta(\boldsymbol{\omega}) = (2\pi)^2 \delta(\omega_1, \omega_2)$

Dirac line (or "ideal" line)

$$f(x,y) = \delta(x) \cdot 1 = f_1(x) f_2(y) \xleftarrow{\mathcal{F}} \hat{f}(\omega_1, \omega_2) = \hat{f}_1(\omega_1) \hat{f}_2(\omega_2) = 1 \cdot 2\pi \delta(\omega_2)$$

$$\downarrow^{y}$$

$$\downarrow^{\omega_2}$$

$$\downarrow^{\omega_$$

What does this mean?

Example

Spatial Domain

f(x,y)

Fourier Domain ω_1 $\hat{f}(\omega_1,\omega_2)$

What are these two sets of lines?

More-Realistic Line Model

Rectangular shape

$$f(x,y) = \text{rect}(x/a) \operatorname{rect}(y/A) \longleftrightarrow |a| \operatorname{sinc}\left(\frac{a\omega_1}{2\pi}\right) |A| \operatorname{sinc}\left(\frac{A\omega_2}{2\pi}\right)$$

Reminder:

$$\operatorname{rect}(x) = \begin{cases} 1, & \text{if } x \in [-1/2, 1/2] \\ 0, & \text{else} \end{cases} \qquad \longleftrightarrow \qquad \operatorname{sinc}\left(\frac{\omega}{2\pi}\right) = \frac{\sin(\omega/2)}{\omega/2}$$

Application: Orientation Estimation

• **Problem:** Design a (real time?) system that can determine the orientation of a (linear) pattern placed at an arbitrary location in an image.

Any ideas?

What do we know?

$$\stackrel{\frown}{\longrightarrow} \stackrel{\mathcal{F}}{\longleftrightarrow}$$

$$g_{\theta}(\boldsymbol{x}) = f(\mathbf{R}_{\theta}\boldsymbol{x})$$

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

$$g_{\theta}(\boldsymbol{x}) \quad \stackrel{\mathcal{F}}{\longleftarrow} \quad \hat{f}(\mathbf{R}_{\theta}\boldsymbol{\omega})$$

We want to find the orientation in the Fourier domain with the least spread.

Problem Solution

Compute the "Fourier inertia" matrix (second-moment matrix)

$$\mathbf{M} = \begin{bmatrix} \iint \omega_1^2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 & \iint \omega_1 \omega_2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 \\ \iint \omega_2 \omega_1 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 & \iint \omega_2^2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 \end{bmatrix}$$
$$= \begin{bmatrix} \langle j\omega_1 \hat{f}(\boldsymbol{\omega}), j\omega_1 \hat{f}(\boldsymbol{\omega}) \rangle & \langle j\omega_1 \hat{f}(\boldsymbol{\omega}), j\omega_2 \hat{f}(\boldsymbol{\omega}) \rangle \\ \langle j\omega_2 \hat{f}(\boldsymbol{\omega}), j\omega_1 \hat{f}(\boldsymbol{\omega}) \rangle & \langle j\omega_2 \hat{f}(\boldsymbol{\omega}), j\omega_2 \hat{f}(\boldsymbol{\omega}) \rangle \end{bmatrix}$$

Second-order moments measure spread

$$= (2\pi)^2 \begin{bmatrix} \langle \partial_x f, \partial_x f \rangle & \langle \partial_x f, \partial_y f \rangle \\ \langle \partial_y f, \partial_x f \rangle & \langle \partial_y f, \partial_y f \rangle \end{bmatrix}$$
 (fast algorithm via Parseval-Plancherel)

Which direction will have the least spread?

The direction of the smallest eigenvalue

Problem Solution (cont'd)

ullet Eigendecomposition of ${f M}$ gives us the axes of inertia

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1^\mathsf{T} \\ \boldsymbol{u}_2^\mathsf{T} \end{bmatrix} \mathbf{M} \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix}$$

 $\lambda_1 \geq \lambda_2$

 $oldsymbol{u}_1$: eigenvector in the direction of the **long** axis

 $oldsymbol{u}_2$: eigenvector in the direction of the **short** axis

- Pipeline:
 - 1. Compute the Fourier inertia matrix ${f M}$ via the fast algorithm
 - 2. Compute the eigendecomposition of ${f M}$ and store ${m u}_2$
 - 3. Return the angle of u_2

$$* \theta = \arctan \frac{u_{22}}{u_{21}}$$

Orientation Estimation in Action

• Image 1:

Measured angle: $25^{\circ} \pm 2^{\circ}$

Computed angle: 27°

• Image 2:

Measured angle: $44^{\circ} \pm 2^{\circ}$

Computed angle: 45.6°

This is how (pre-deep-learning-based) machine vision worked

Video Example

How do we determine the direction of the car?

Video Example (cont'd)

What are the dimensions of the Fourier inertia matrix?

Magnitude and Phase Information

The Fourier transform is complex-valued

$$\hat{f}(\boldsymbol{\omega}) = \int_{\mathbb{R}^2} f(\boldsymbol{x}) \mathrm{e}^{-\mathrm{j}\boldsymbol{\omega}^\mathsf{T}\boldsymbol{x}} \,\mathrm{d}\boldsymbol{x} = |\hat{f}(\boldsymbol{\omega})| \, \exp\left(\mathrm{j}\phi(\boldsymbol{\omega})\right)$$
magnitude phase

Fourier magnitude

$$|\hat{f}(\boldsymbol{\omega})| = (\hat{f}(\boldsymbol{\omega}) \, \hat{f}^*(\boldsymbol{\omega})) = \sqrt{(\Re \hat{f}(\boldsymbol{\omega}))^2 + (\Im \hat{f}(\boldsymbol{\omega}))^2}$$

Fourier phase

$$\phi(\boldsymbol{\omega}) = \arg\left(\hat{f}(\boldsymbol{\omega})\right) = \arctan\left(\frac{\Im \hat{f}(\boldsymbol{\omega})}{\Re \hat{f}(\boldsymbol{\omega})}\right)$$

Is the phase of the image spectrum important? Can we get away with just the magnitude?

The Importance of Phase for Visual Perception

Image 1

Image 2

Magnitude(Image2), Phase(Image1)

Magnitude(Image1), Phase(Image2)

What's stored in the phase?

Outline

- Images as Functions
 - Vector-space formulation
 - Two-Dimensional Systems
- 2D Fourier Transform
 - Properties
 - Dirac Impulse, etc.
- Characterization of LSI Systems
 - Multidimensional Convolution
 - Modeling of Optical Systems
 - Examples of Impulse Responses

Impulse Responses of Linear Systems

Recall: It is always that $f({m x})=(\delta*f)({m x})=\int_{\mathbb{R}^2}f({m u})\delta({m x}-{m u})\,\mathrm{d}{m u}.$

Setting: Consider a linear (not necessarily shift-invariant) system H.

Exercise: Show that
$$g(\boldsymbol{x}) = \int_{\mathbb{R}^2} f(\boldsymbol{u}) h(\boldsymbol{x}, \boldsymbol{u}) \, \mathrm{d} \boldsymbol{u}$$
.
$$g(\boldsymbol{x}) = \mathrm{H}\{f(\boldsymbol{x})\} = \mathrm{H}\left\{\int_{\mathbb{R}^2} f(\boldsymbol{u}) \delta(\boldsymbol{x} - \boldsymbol{u}) \, \mathrm{d} \boldsymbol{u}\right\}$$
$$= \int_{\mathbb{R}^2} f(\boldsymbol{u}) \mathrm{H}\{\delta(\boldsymbol{x} - \boldsymbol{u})\} \, \mathrm{d} \boldsymbol{u} \qquad \text{(H is linear)}$$

 $= \int_{\mathbb{D}^2} f(\boldsymbol{u}) h(\boldsymbol{x}, \boldsymbol{u}) \, \mathrm{d}\boldsymbol{u}$

The output of a system is the input integrated against the impulse response.

Linear, Shift-Invariant Systems (LSI)

Definition: A linear system H is **shift-invariant** if and only if shifted inputs correspond to shifted outputs.

$$g(\boldsymbol{x}) = \int_{\mathbb{R}^2} f(\boldsymbol{u}) h(\boldsymbol{x}, \boldsymbol{u}) d\boldsymbol{u}$$
 $g(\boldsymbol{x} - \boldsymbol{x}_0) = \int_{\mathbb{R}^2} f(\boldsymbol{u}) h(\boldsymbol{x} - \boldsymbol{x}_0, \boldsymbol{u}) d\boldsymbol{u}$
 $g(\boldsymbol{x} - \boldsymbol{x}_0) = \int_{\mathbb{R}^2} f(\boldsymbol{u} - \boldsymbol{x}_0) h(\boldsymbol{x}, \boldsymbol{u}) d\boldsymbol{u}$
 $= \int_{\mathbb{R}^2} f(\boldsymbol{u}) h(\boldsymbol{x}, \boldsymbol{u} + \boldsymbol{x}_0) d\boldsymbol{u}$

$$\implies h(\boldsymbol{x}-\boldsymbol{x}_0,\boldsymbol{u}) = h(\boldsymbol{x},\boldsymbol{u}+\boldsymbol{x}_0)$$
 $orall \boldsymbol{x},\boldsymbol{x}_0,\boldsymbol{u} \in \mathbb{R}^2$

In particular,
$$h(m{x}-m{x}_0, m{0}) = h(m{x}, m{x}_0)$$
 (set $m{u}=m{0}$)

Linear, Shift-Invariant Systems (LSI)

Definition: A linear system H is **shift-invariant** if and only if shifted inputs correspond to shifted outputs.

$$g(\boldsymbol{x}) = \int_{\mathbb{R}^2} f(\boldsymbol{u}) h(\boldsymbol{x}, \boldsymbol{u}) d\boldsymbol{u}$$

LSI systems are realized by convolutions!

$$h(oldsymbol{x}-oldsymbol{x}_0,oldsymbol{0})=h(oldsymbol{x},oldsymbol{x}_0)$$
 for any $oldsymbol{x},oldsymbol{x}_0\in\mathbb{R}^2$

Define
$$h_{\mathrm{LSI}}(\boldsymbol{x}) = h(\boldsymbol{x}, \boldsymbol{0})$$

$$\implies h(\boldsymbol{x}, \boldsymbol{u}) = h(\boldsymbol{x} - \boldsymbol{u}, \boldsymbol{0}) = h_{\text{LSI}}(\boldsymbol{x} - \boldsymbol{u})$$

We will just write h for h_{LSI}

$$g(\boldsymbol{x}) = \mathrm{H}\{f(\boldsymbol{x})\} = \int_{\mathbb{R}^2} f(\boldsymbol{u}) h_{\mathrm{LSI}}(\boldsymbol{x} - \boldsymbol{u}) \, \mathrm{d}\boldsymbol{u} = (f * h_{\mathrm{LSI}})(\boldsymbol{x})$$

Linear, Shift-Invariant Systems (LSI)

Theorem: Complex exponentials $e^{j(\omega_1 x + \omega_2 y)}$ are *eigenfunctions* of the LSI system H with *eigenvalue* $\lambda = \lambda(\omega_1, \omega_2) = \hat{h}(\omega_1, \omega_2)$.

Proof:
$$H\{e^{j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}}\} = \int_{\mathbb{R}^2} h(\boldsymbol{u})e^{j\boldsymbol{\omega}^{\mathsf{T}}(\boldsymbol{x}-\boldsymbol{u})} d\boldsymbol{u}$$

$$= e^{j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}} \int_{\mathbb{R}^2} h(\boldsymbol{u})e^{-j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{u}} d\boldsymbol{u}$$

$$= \hat{h}(\boldsymbol{\omega}) e^{j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}}$$

2D Convolutions

2D Convolution integral

$$(f * h)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u,v)h(x-u,y-v) du dv$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v)f(x-u,y-v) du dv = (h * f)(x,y)$$

Convolution theorem

$$(f*h)(\boldsymbol{x}) \stackrel{\mathcal{F}}{\longleftrightarrow} \hat{f}(\boldsymbol{\omega})\hat{h}(\boldsymbol{\omega})$$

The Fourier transform converts convolutions into multiplications!

Proof of the Convolution Theorem

Frequency Responses of LSI Systems

What is the frequency response of this system?

• The frequency response is $\hat{h}(\boldsymbol{\omega})$

Controls notation: $H(j\omega) = \hat{h}(\omega)$

H(s), $s \in \mathbb{C}^2$, is the transfer function

$$H(s) = \int_{\mathbb{R}^2} h(x) e^{-s^T x} dx$$
 (2D two-sided Laplace transform)

How do we identify the frequency response of a system?

Identification of the Frequency Response

• Method 1: Eigenfunction property

Excite the system with a pure frequency

$$\hat{h}(\boldsymbol{\omega}) = \lambda = \frac{H\{e^{j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}}\}}{e^{j\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}}}$$

Method 2: From the impulse response

Excite the system with an impulse

$$\hat{h}(\boldsymbol{\omega}) = \widehat{\mathbf{H}\{\delta\}}(\boldsymbol{\omega})$$

Method 3: From an arbitrary input and output

Excite the system with an arbitrary input

$$g(\boldsymbol{x}) = (f * h)(\boldsymbol{x}) \implies \hat{g}(\boldsymbol{\omega}) = \hat{f}(\boldsymbol{\omega})\hat{h}(\boldsymbol{\omega})$$
$$\implies \hat{h}(\boldsymbol{\omega}) = \frac{\hat{g}(\boldsymbol{\omega})}{\hat{f}(\boldsymbol{\omega})}$$

Outline

- Images as Functions
 - Vector-space formulation
 - Two-Dimensional Systems
- 2D Fourier Transform
 - Properties
 - Dirac Impulse, etc.
- Characterization of LSI Systems
 - Multidimensional Convolution
 - Modeling of Optical Systems
 - Examples of Impulse Responses

Modeling of Optical Systems

$$f(\boldsymbol{x}) \longrightarrow \boldsymbol{g}(\boldsymbol{x}) = (h * f)(\boldsymbol{x})$$

$$h(x) = h(x, y)$$
: Point Spread Function (PSF)

Diffraction-limited optics = LSI system

microscopes, telescopes, cameras, etc.

 Aberation-free point spread function "ideal"

Modeling of Optical Systems

$$f(\boldsymbol{x}) \longrightarrow \boldsymbol{g}(\boldsymbol{x}) = (h * f)(\boldsymbol{x})$$

h(x) = h(x, y): Point Spread Function (PSF)

Effect of misfocus

Need to be mindful of the focal length of your optical system

More Examples of System Responses

CCD (= digital) camera

Impulse response = sampling aperature = photosite = pixel integration area

$$h(x,y) = \frac{1}{L^2} \operatorname{rect}\left(\frac{x}{L}\right) \operatorname{rect}\left(\frac{y}{L}\right)$$

$$\hat{h}(\omega_1, \omega_2) = \operatorname{sinc}\left(\frac{L\omega_1}{2\pi}\right) \operatorname{sinc}\left(\frac{L\omega_2}{2\pi}\right)$$

The resolution of CCD cameras is $L \times L$

This system takes **local averages** over $L \times L$ squares

More Examples of System Responses

Motion blur

time-varying position

Hypothesis: "system" comes from the motion of the camera: ${m x}_0(t)$

$$g(\boldsymbol{x}) = \frac{1}{T} \int_0^T f(\boldsymbol{x} - \boldsymbol{x}_0(t)) dt$$

Is this system shift-invariant?

Shift-invariant, but not time-invariant

What is the impulse response?

$$h(\boldsymbol{x}) = \frac{1}{T} \int_0^T \delta(\boldsymbol{x} - \boldsymbol{x}_0(t)) dt$$

$$\uparrow \mathcal{F}$$

What is the frequency response?

$$\hat{h}(\boldsymbol{\omega}) = \frac{1}{T} \int_0^T e^{-j\boldsymbol{\omega}^\mathsf{T} \boldsymbol{x}_0(t)} dt$$

Motion Blur Example

• Uniform motion $x_0(t) = (t/T, 0)$

$$h(x,y) = \frac{1}{T} \int_0^T \delta\left(x - \frac{t}{T}, y\right) dt$$

$$= \frac{1}{T} \int_0^T \delta\left(x - \frac{t}{T}\right) \delta(y) dt$$

$$= \delta(y) \frac{1}{T} \int_0^T \delta\left(x - \frac{t}{T}\right) dt$$

$$= \delta(y) \frac{1}{T} \int_{-\infty}^\infty \text{rect}\left(\frac{t}{T} - \frac{1}{2}\right) \delta\left(x - \frac{t}{T}\right) dt$$

$$= \text{rect}\left(x - \frac{1}{2}\right) \delta(y) \xrightarrow{\mathcal{F}} \hat{h}(\omega_1, \omega_2) = e^{-j\omega_1/2} \operatorname{sinc}\left(\frac{\omega_1}{2\pi}\right)$$

The impulse response is a "windowed" ideal line

Motion Blur Example

Can we use this to understand photographing a moving car?

Change the frame of reference to the car

This is how motion blurs are implemented in Photoshop, GIMP, etc.

Summary

- Analog images are modeled as functions f(x,y) of the two spatial variables x and y.
- These functions are assumed to have finite energy: $f \in L^2(\mathbb{R}^2)$. It is convenient to view them as points in a vector space with an inner product.
- An image-processing operator (or system) is a mapping $H: L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$.
- The complex exponentials $e^{j\omega^T x}$ are the eigenfunctions of LSI systems. They are $(2\pi/\|\omega\|_2)$ -periodic plane waves that propagate in the direction ω .
- The 2D Fourier transform of an image reveals its spatial frequency content. The Fourier phase contains the most relevant perceptual information (contours).
- The 2D Fourier transform is very similar to the 1D one and therefore inherits essentially the same properties.
- The 2D Fourier transform of a separable image $f(x,y)=f_1(x)f_2(y)$ is determined using 1D transforms only.
- LSI systems are realized by convolutions.
- Analog LSI systems are completely characterized by their impulse response (point-spread function or sampling aperature) $h(x,y) = H\{\delta\}(x,y)$, or, equivalently, by their frequency response $\hat{h}(\omega_1,\omega_2)$.