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Dirac-Related Fourier Transforms

e Constant

o0
. . F .
One-dimensional: 1 M/ e YT dx =777
— OO

A

= lim e 1T dx = 27 §(w)
A— o0 A

Two-dimensional: 1 <2 (27)26(w) = (27)26 (w1, w2)

e Dirac line (or “ideal” line)

flz,y

Y

“infinite-amplitude line”

"X

F A A

(or by duality)

) =0(z) - 1= fi(z)f2(y) < > fwi,wz) = fi(wn) f2(wz) = 1- 276 (wo)

What does this mean?



Example

Spatial Domain Fourier Domain
W2

A

f(w17w2)

What are these two sets of lines?



More-Realistic Line Model

e Rectangular shape

A
f(x,y) =rect(x/a)rect(y/A) < A lalsinc (C;Wl) |A\Sinc< 2w2
T
a
Reminder:
1, ifae —-1/2,1/2] | F | , (w) sin(w/2)
tz) = < S 4 sinc [ — ) =

rect(x) 0. else = o




Application: Orientation Estimation

e Problem: Design a (real time?) system that can determine the orientation
of a (linear) pattern placed at an arbitrary location in an image.

e \What do we know?

AN
~

N
~

Any ideas?

go(x) = f(Rox)

cosf —sinb
Ry = {sin@ cos 0 }
F A
go(x) < > f(Ryw)

We want to find the orientation in the Fourier domain with the least spread.



Problem Solution

e Compute the “Fourier inertia” matrix (second-moment matrix)

ffw 2 dwy dwo [/ wlwg\f(w)lz dw; dws

M =

I ffw2w1!f(w)!2 dwy dwy  [f @3] f(w)]? dwr duws
- (jwif(w), jwi f(w)) (i f(w), jwaf(w)) |
| (jwaf(w), jwi f(w))  (jwaf(w), jwaf(w)) |

Second-order moments measure spread

(0o, 04 f) (Ouf,0uf)

— (271-)2 (fast algorithm via Parseval-Plancherel)

(0,£,000) (0,1.0,0)

The direction of the

Which direction will have the least spread? :
smallest eigenvalue



Problem Solution (cont’d)

e Eigendecomposition of M gives us the axes of inertia

u1: eigenvector in the direction of the long axis
Uso: eigenvector in the direction of the short axis

e Pipeline:

U,

Uy

1. Compute the Fourier inertia matrix M via the fast algorithm

2. Compute the eigendecomposition of M and store us

3. Return the angle of us

U2
x 0 = arctan —

U21



Orientation Estimation in Action

e Image 1:

Measured angle: 25° +
Computed angle: 27°

e Image 2:

Measured angle: 44° + 2°
Computed angle: 45.6°

This is how (pre-deep-learning-based) machine vision worked

10



Video Example

How do we determine the direction

of the car?
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Video Example (cont’d)

What are the dimensions of the Fourier inertia matrix?
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Magnitude and Phase Information

e [he Fourier transform is complex-valued

fw)= | J@e = de = |f(w)] exp (o))
/ AN

magnitude phase
e Fourier magnitude

e Fourier phase

¢(w) = arg (f(w)) = arctan (;;Ei;)

Is the phase of the image spectrum important?
Can we get away with just the magnitude?
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The Importance of Phase for Visual Perception

Image 1 Image 2

Magnitude(Image2), Phase(Image1) Magnitude(Image1), Phase(Image?2)

What's stored in the phase?
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Impulse Responses of Linear Systems

Recall: It is always that f(x) = (0 % f)(x) = f(u)d(x — u) du.
R2

Setting: Consider a linear (not necessarily shift-invariant) system H.

o(x — u) h(x,u)

e H S

f(x) g(x)

Exercise: Show that g(x) :/ f(u)h(x,u)du.

R2
g(x) =H{f(x)} =H { . f(u)d(x —u) du}
— . fu)H{d(x — u)} du (H is linear)

The output of a system is the input

= u)h(x,u)du _ . :
R2 flwh(@, u) integrated against the impulse response.
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Linear, Shift-Invariant Systems (LSl)

Definition: A linear system H is shift-invariant if and only if shifted
inputs correspond to shifted outputs.

fle) — H — g(x)
f(i'?—i'?o)—’ H —»g(w—wo) Va?OEIR{Q
g(x) = /R f(wh(z,u) du — h(x —xo,u) = hz,u+ xo)

Vo, o, u € R?

In particular, h(x — xy,0) = h(x, x()

(set u = 0)
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Linear, Shift-Invariant Systems (LSl)

Definition: A linear system H is shift-invariant if and only if shifted

inputs correspond to shifted outputs.

fl@)—

g9(x) = . flu)h(z, u) du

H

— g(x)

LS| systems are realized
by convolutions!

h(x — xg,0) = h(x,xg) for any x, zg € R?

Define hrsi(x) = h(x, 0)

We will just

— h(aj, u) — h(a’; — U, O) — hLSI(m — ’u,) write h fOr hLSI

o) = H{f(@)} = | fwhisi(z —w)du= (]« hisi)(x)
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Linear, Shift-Invariant Systems (LSl)

Theorem: Complex exponentials ed(w1Z+w2v) 3ra eigenfunctions ot
the LSI system H with eigenvalue A = \(w1,ws) = h(wy,ws).

ol(wiztway) - \ ed(wiztway)
N
. T . T
Proof: H{e)* *} = h(u)el” (=) dy
R2

:ej“’T"’/ h(u)e_j“’T“ du
R2
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2D Convolutions

e 2D Convolution integral

(f*h)(x,y):/_O:O/_O:Of(u,v)h(x—u,y—v)dudv
:/_O:O/_O:Oh(u,v)f(x—u,y—v)dudv:(h*f)(:zz,y)

e Convolution theorem

(f % h) (@) «5 f(w)h(w)

The Fourier transform converts convolutions into multiplications!
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Proof of the Convolution Theorem

iw) = [ ([ fwnte - wdu)e " da

— / ( f(u)h(v)e_ij(u+”) du) dv (change of variables v = & — u)
R2 R2

= / f(u)e_j“’T'“’ du) (/ h(fv)e_j“’T"’ dv> (e7Iw' (utv) = g=jw'ug—jw'v)
R2 R2

= f(w)h(w)
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Frequency Responses of LS| Systems

f(x) g9(x) = Hif}(z)
0(x) g H > h(z)
plw' @ Aedw' ® N\ = h(w)

Linear and Shift-Invariant (LSI)

What is the frequency response of this system?

o The frequency response is h(w)
Controls notation: H(jw) = h(w)

H(s), s € C?, is the transfer function

H(s) = /R? h(:z:)e_"”T‘B do (2D two-sided Laplace transform)

How do we identify the frequency response of a system?
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Identification of the Frequency Response

f(x) g9(x) = Hif}(z)
0(x) g H > h(z)
plw' @ Aedw' ® N\ = h(w)

Linear and Shift-Invariant (LSI)

e Method 1: Eigenfunction property

Excite the system with ) H{ej“’T“’}
3 £ h(w) =\ = —
pure rrequency plw' T
e Method 2: From the impulse response
Excite the system with . _—

an impulse

e Method 3: From an arbitrary input and output

Excite the system with gx) = (fxh)(z) = §(w)= flw)h(w
an arbitrary input X §(w)

N——"
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Modeling of Optical Systems

f(z) > g(x) = (h* f)(x)

h(x) = h(x,y): Point Spread Function (PSF)

MICroscopes,

Diffraction-limited optics = LSI system telescopes,
cameras, etc.

g =

e Aberation-free point spread function
“ideal”

-

Airy Disk Radial Profile
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Modeling of Optical Systems

e Effect of misfocus

Point source

(in focus) (defocus) (longitudinal section)

Need to be mindful of the focal length of your optical system
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More Examples of System Responses

e CCD (= digital) camera m

Impulse response = sampling aperature = photosite = pixel integration area

Y 1
1 h(x,y) = ﬁrect (%) rect (%)
- T
I]—"
< >
L ; . Lwy\ Lws
h(wy,ws) = sinc | —— | sinc [ —=
27 27

The resolution of CCD cameras is L x L

This system takes local averages over L X L squares
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More Examples of System Responses

e Motion blur time-varying
position
Hypothesis: “system” comes from the motion of the camera: x(t)

1 [T Is this system shift-invariant?
o@) =7 [ f@—mt)dt

Shift-invariant, but not time-invariant

T
What is the impulse response? h(x) = —/ §(x — xo(t)) dt
0

T
What is the frequency response? hw) = ! / eI wo(t) gy
0
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Motion Blur Example

e Uniform motion xq(t) = (¢t/T,0)

h(x,y)—%/OT5<:c—%,y> dt 1
—%/OT(s(g;—%)é(y)dt
—5(y)%/OT5<a:—%> dt 0 1

1 F . w1 /2
= rect T -3 o(y) < > h(wy,ws) =e ¥/ “ginc

The impulse response is a “windowed” ideal line

(5

W

T

)
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Motion Blur Example

Can we use this to understand photographing a moving car?

o -
-y -
_— COUNESSEE S —
= ¢ m—
= e
— ) R 15 ——— \Y

Change the frame of reference to the car

This is how motion blurs are implemented in Photoshop, GIMP, etc.
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Summary

Analog images are modeled as functions f(x,y) of the two spatial variables z and y.

These functions are assumed to have finite energy: f € L?(R?). It is convenient to view them as
points in a vector space with an inner product.

An image-processing operator (or system) is a mapping H : L*(R?) — L*(R?).

The complex exponentials ei'® are the eigenfunctions of LS| systems. They are (27 /||w]|2)-
periodic plane waves that propagate in the direction w.

The 2D Fourier transform of an image reveals its spatial frequency content. The Fourier phase
contains the most relevant perceptual information (contours).

The 2D Fourier transform is very similar to the 1D one and therefore inherits essentially the same
properties.

The 2D Fourier transform of a separable image f(x,y) = fi(zx)f2(y) is determined using 1D
transforms only.

LS| systems are realized by convolutions.

Analog LS| systems are completely characterized by their impulse response (point-spread func-
tion or sampling aperature) h(z,y) = H{d}(x,y), or, equivalently, by their frequency response
h(wi,ws).
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